3. 행렬과 미분방정식 미분방정식의 수가 많아지면 일반해를 세울 수 있다. 이때 각 함수(기저)들은 1차 독립이어야 1차결합으로 표현 가능하다. 이때 Wronskian W를 사용하면 쉽게 판별할 수 있다. W(y1,⋯,yn)=|y1y2⋯yny′1y′2⋯y′n⋮⋮⋱⋮y(n−1)1y(n−1)2⋯y(n−1)n| 이 행렬식이 0이 아니라면, 각 함수들은 선형 독립이다. 연립방정식은 행렬로 표현하고, 해를 구할 수 있다. $Ax .. Math/Advanced Engineering 2023.06.09
2. 2계 상미분 방정식 제차 선형상미분방정식에 대해 중첩의 원리 또는 선형성의 원리가 적용된다. 이는 2계라면, 일반해 y가 y1과 y2의 1차 결합으로 표현된다는 것이다. n계 제차 선형상미분방정식의 경우 해는 y=n∑i=1ciyi이다. 일차결합 식이 0과 같을 때, 각 계수가 0이어야만 성립한다면 1차 독립이라고 부른다. 이때 yi값들을 기저라고 부른다. 따라서 기저끼리는 비례하지 않는다. 즉, 일반해는 기저의 1차 결합으로 나타낼 수 있다. 2계 제차 선형 상미분 방정식 y″+p(x)y′+q(x)y=0 1. 차수 축소 법 (Reduction of order) 한 개의 해를 알고 있을 때 1계 미분방정식을 유도해서 다른 해를 구하는 방법이다. 일반해.. Math/Advanced Engineering 2023.04.17